On the Coherence in the Boundary Layer: Development of a Canopy Interface Model
نویسندگان
چکیده
A 1D Canopy Interface Model (CIM) is developed to act as an interface between a meso-scale and a micro-scale atmospheric model and to better resolve the surface turbulent fluxes in the urban canopy layer. A new discretisation is proposed to solve the TKE equation finding solutions that remain fully concordant with the surface layer theories developed for neutral flows over flat surfaces. A correction is added in the buoyancy term of the TKE equation to improve consistency with theMonin-Obukhov surface layer theory. Obstacles of varying heights and dimensions are taken into account by introducing specific terms in the equations and by modifying the mixing length formulation in the canopy layer. The results produced by CIM are then compared with wind and TKE profiles simulated with a LES experiment and results obtained during the BUBBLEmeteorological intensive observation campaign. It is shown that the CIM computations are in good agreement with the results simulated by the LES as well as the measurements from BUBBLE. The applicability of the correction term in an urban canopy layer and to further validate CIM in multiple stability conditions and various urban configurations is discussed.
منابع مشابه
Influence of the Imperfect Interface on Love-Type Mechanical Wave in a FGPM Layer
In this study, we consider the propagation of the Love-type wave in piezoelectric gradient covering layer on an elastic half-space having an imperfect interface between them. Dispersion relation has been obtained in the form of determinant for both electrically open and short cases. The effects of different material gradient coefficients of functionally graded piezoelectric material (FGPM) and ...
متن کاملSimulation of entrainment near a density stratified layer: Laboratory experiment and LIDAR observation
In this paper a simple qualitative model of the growth of a mixed layer adjacent to a uniform layer with a stably stratified layer is presented. The depth variations of mixed layer can be estimated from direct measurements. The Entrainment of a stably stratified layer into a turbulent mixed layer in a confined region was studied in laboratory for different Richardson numbers. The internal waves...
متن کاملWave Propagation at the Boundary Surface of Elastic Layer Overlaying a Thermoelastic Without Energy Dissipation Half-space
The present investigation is to study the surface wave propagation at imperfect boundary between an isotropic thermoelastic without energy dissipation half-space and an isotropic elastic layer of finite thickness. The penetration depth of longitudinal, transverse, and thermal waves has been obtained. The secular equation for surface waves in compact form is derived after developing the mathemat...
متن کاملSimulation of the effect of sub- micron interface roughness on the stress distribution in functionally graded thermal barrier coatings (FG- TBC)
In this research, a numerical modeling was utilized to calculate the stresses caused during thermal cycling in a functionally graded thermal barrier coating (FG - TBC). The temperature – dependent material response of this protective material was taken into account and the effects of thermal cycle and interface morphology of the ceramic / metallic layer in functionally graded coating system wa...
متن کاملDynamics of Love-Type Waves in Orthotropic Layer Under the Influence of Heterogeneity and Corrugation
The present problem deals with the propagation of Love-type surface waves in a bedded structure comprises of an inhomogeneous orthotropic layer and an elastic half-space. The upper boundary and the interface between two media are considered to be corrugated. An analytical method (separation of variables) is adapted to solve the second order PDEs, which governs the equations of motion. Equations...
متن کامل